THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics

MATH2058 Honours Mathematical Analysis I Tutorial 1

Date: 13 September, 2024

TH Jufornation: Stephen Lin stephenlin@cerle edu. Uk LSB 232A

announcement:

· HWI posted on course website, due 24/9 23:59pm on Gradescope • Quiz I will be on 20/9 during lecture

axions Question Example:

For a +0, Prone theat = a eq. A2 commutativity of addition

at each step, label which axiom you the using

MATH2058 Tutorial 1

3. Let $S \subseteq \mathbb{R}$ be nonempty and u be an upper bound of S. Show that the following two statements are equivalent:

- (a) if v is any upper bound of S, then $u \leq v$.
- (b) for any $\varepsilon > 0$, there exists $s_{\varepsilon} \in S$ such that $u \varepsilon < s_{\varepsilon}$.

Pf: (a) \Rightarrow (b): let $\epsilon > 0$ be given. Clearly $u - \epsilon < u$. So by contrapositive of (a), $u - \epsilon$ is not on upper bound of S. Since $u - \epsilon$ is not on u, b., we can find an $s_{\epsilon} \in S$ s. $u - \epsilon < s_{\epsilon}$.

(b) \Rightarrow (a). Suppose u satisfies (b). Let v be an u.b. of S. Sps on the contrary that v < u. Then take z = u - v > 0. Then by (b), $\exists S_z \in S$ s.t. $S_z > u - \varepsilon_0 = v$. Contradicts fact that v is an u.b. of S.

MATH2058 Tutorial 1 5

- 4. (Exercises 2.3.12 and 2.3.13 of [BS11])
 - (a) Let $S \subseteq R$ and suppose that $s^* = \sup S$ belongs to S. If $u \notin S$, show that $\sup(S \cup \{u\}) = \sup\{s^*, u\}$.
 - (b) Show that a nonempty finite set $S \subseteq \mathbb{R}$ contains its supremum.

Pf: (a): 2 cases: 1) u<s*. Then clearly 5* 15 an u.b. of Sv Euz. Remains to show 5* is Lu.b. (et v be an u.b. of Sv Euz. We have v>u, v>s for eul ses. > v>s* since s*=sups. Then since s*>u, we also have v>s*>u.

So s*=sup(Sv Euz).

2) s*<u. Similar.

b) We induct on the size of the set.

Base case {x, \{\int}. \tanably, \times = \sup \{x, \{\int}.\}.

[x, x_\{\int}]

Juduation Step: Suppose $S = \{x_1, \dots, x_k\}$ and $supS \in S$, theat is, $x_j = supS$ for some j in $\{1,\dots,k\}$. By previous part, we know that $sup\{x_1,\dots,x_k,x_{k+1}\} = sup\{x_j,x_{k+1}\}$, and both x_j , x_{k+1} lie in the set $\{x_1,\dots,x_{k+1}\}$.

MATH2058 Tutorial 1

5. By the Archimedean property of \mathbb{R} , we can deduce that $\inf \left\{ \frac{1}{n} : n \in \mathbb{N} \right\} = 0$. Prove the converse statement, i.e., assume we know that $\inf \left\{ \frac{1}{n} : n \in \mathbb{N} \right\} = 0$, then prove the Archimedean property without invoking the completeness axiom.

Pf: Let $K \in \mathbb{R}$. WTS $\exists n_x \in \mathbb{N}$ s.t. $x \leq n_x$. If $x \leq 0$, then charly $l \in \mathbb{N}$ nodes. Now suppose x > 0. Then $0 < \frac{1}{x}$.

Then since 0 = the infimum of the set $\frac{1}{x} = n \in \mathbb{N}$, we know the $\frac{1}{x} = n \in \mathbb{N}$.

So $\exists n_x \in \mathbb{N}$ s.t. $0 < \frac{1}{n_x} < \frac{1}{x}$.

Taling reciprocal, une are done.

MATH2058 Tutorial 1 7

6. Let $r \in \mathbb{R}$ be fixed. Determine the infimum and supremum of the set $X = \{|q - r| : q \in \mathbb{Q}\}$ if they exist.

If: First show X 13 not bounded by A.P. let $0 \le M \in R$ Then WTS $\exists g_M \in \mathbb{R}$ s.t. $M < |g_M - r|$. But by A.P. $\exists n_M \in \mathbb{N}$ s.t. $M + r \le n_M$, so we are done.

So sup X does not exact. Non show inf X= 0. By E-condition of infinum, suffices to show $\theta \in >0$, $\exists g \in \mathbb{R}$ s.t. $|g \in -r| < \epsilon$ which follows by denoty of \mathbb{R} in \mathbb{R} .